A B C D E F G H I J K L M N O P R S T U V W X Y 

K

KAPPA_PROPERTY - Static variable in class edu.ucla.sspace.clustering.FastStreamingKMeans
The property for specifying kappa, the maximum number of facilities.
KEEP_SIMILARITY_MATRIX_IN_MEMORY_PROPERTY - Static variable in class edu.ucla.sspace.clustering.LinkClustering
The property to specify if the edge similarity matrix should be kept in memory during clustering, or if its values should be computed on the fly.
KEEP_WEIGHT_VECTORS_PROPERTY - Static variable in class edu.ucla.sspace.graph.WeightedLinkClustering
 
kendallsTau(double[], double[]) - Static method in class edu.ucla.sspace.common.Similarity
Computes Kendall's tau of the values in the two arrays.
kendallsTau(int[], int[]) - Static method in class edu.ucla.sspace.common.Similarity
Computes Kendall's tau of the values in the two arrays.
kendallsTau(Vector, Vector) - Static method in class edu.ucla.sspace.common.Similarity
Computes Kendall's tau of the values in the two vectors.
kendallsTau(DoubleVector, DoubleVector) - Static method in class edu.ucla.sspace.common.Similarity
Computes Kendall's tau of the values in the two vectors.
kendallsTau(IntegerVector, IntegerVector) - Static method in class edu.ucla.sspace.common.Similarity
Computes Kendall's tau of the values in the two vectors.
KendallsTau - Class in edu.ucla.sspace.similarity
A functional class for computing Kendall's tau of the values in the two vectors.
KendallsTau() - Constructor for class edu.ucla.sspace.similarity.KendallsTau
 
ket - Variable in class org.tartarus.snowball.SnowballProgram
 
keySet() - Method in class edu.ucla.sspace.basis.AbstractBasisMapping
Returns the set of keys known by this BasisMapping
keySet() - Method in interface edu.ucla.sspace.basis.BasisMapping
Returns the set of keys known by this BasisMapping
keySet() - Method in class edu.ucla.sspace.dv.PathBasedBasisMapping
Returns the set of keys known by this BasisMapping
keySet() - Method in class edu.ucla.sspace.dv.RelationPathBasisMapping
Returns the set of keys known by this BasisMapping
keySet() - Method in class edu.ucla.sspace.util.CharMap
Returns a Set view of the keys contained in this map.
keySet() - Method in class edu.ucla.sspace.util.GeneratorMap
keySet() - Method in class edu.ucla.sspace.util.HashBiMap
keySet() - Method in class edu.ucla.sspace.util.HashMultiMap
Returns a Set view of the mappings contained in this multi-map.
keySet() - Method in class edu.ucla.sspace.util.IntegerMap
Returns a Set view of the keys contained in this map.
keySet() - Method in interface edu.ucla.sspace.util.MultiMap
Returns a Set view of the mappings contained in this multi-map.
keySet() - Method in class edu.ucla.sspace.util.primitive.IntIntHashMultiMap
Returns a Set view of the mappings contained in this multi-map.
keySet() - Method in interface edu.ucla.sspace.util.primitive.IntIntMultiMap
Returns a Set view of the mappings contained in this multi-map.
keySet() - Method in class edu.ucla.sspace.util.TreeMultiMap
Returns a Set view of the mappings contained in this multi-map.
keySet() - Method in class edu.ucla.sspace.util.TrieMap
Returns a Set view of the keys contained in this map.
klDivergence(DoubleVector, DoubleVector) - Static method in class edu.ucla.sspace.common.Similarity
Computes the K-L Divergence of two probability distributions A and B where the vectors a and b correspond to n samples from each respective distribution.
klDivergence(IntegerVector, IntegerVector) - Static method in class edu.ucla.sspace.common.Similarity
Computes the K-L Divergence of two probability distributions A and B where the vectors a and b correspond to n samples from each respective distribution.
klDivergence(Vector, Vector) - Static method in class edu.ucla.sspace.common.Similarity
Computes the K-L Divergence of two probability distributions A and B where the vectors a and b correspond to n samples from each respective distribution.
klDivergence(double[], double[]) - Static method in class edu.ucla.sspace.common.Similarity
Computes the K-L Divergence of two probability distributions A and B where the vectors a and b correspond to n samples from each respective distribution.
klDivergence(int[], int[]) - Static method in class edu.ucla.sspace.common.Similarity
Computes the K-L Divergence of two probability distributions A and B where the vectors a and b correspond to n samples from each respective distribution.
KLDivergence - Class in edu.ucla.sspace.similarity
Returns the KL Divergence between any two probability distributions represented as Vectors.
KLDivergence() - Constructor for class edu.ucla.sspace.similarity.KLDivergence
 
kMeansObjective(int, int[], Matrix) - Static method in class edu.ucla.sspace.clustering.BaseSpectralCut
Returns the K-Means objective over an arbitrary clustering assignment for the data set.
KMeansPlusPlusSeed - Class in edu.ucla.sspace.clustering.seeding
This KMeansSeed implementation attempts to select centroids from the set of data points that are well scattered.
KMeansPlusPlusSeed() - Constructor for class edu.ucla.sspace.clustering.seeding.KMeansPlusPlusSeed
 
KMeansSeed - Interface in edu.ucla.sspace.clustering.seeding
An interface for KMeans seeding algorithms.
KOFL_PROPERTY - Static variable in class edu.ucla.sspace.clustering.StreamingKMeans
 
KrippendorffsAlpha - Class in edu.ucla.sspace.util
 
KrippendorffsAlpha() - Constructor for class edu.ucla.sspace.util.KrippendorffsAlpha
 
KrippendorffsAlpha.DifferenceFunction - Enum in edu.ucla.sspace.util
 
A B C D E F G H I J K L M N O P R S T U V W X Y 

Copyright © 2012. All Rights Reserved.