public class KLDivergence extends Object implements SimilarityFunction
Vectors.
This metric is not symmetric. Use the Jensen-Shannon Divergence for a
symmetric similarity measure between two probability distributions| Constructor and Description |
|---|
KLDivergence() |
| Modifier and Type | Method and Description |
|---|---|
boolean |
isSymmetric()
Returns
false (is asymmetric). |
void |
setParams(double... arguments)
Does nothing
|
double |
sim(DoubleVector v1,
DoubleVector v2)
Returns the similarity between
v1 and v2. |
double |
sim(IntegerVector v1,
IntegerVector v2)
Returns the similarity between
v1 and v2. |
double |
sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2. |
public void setParams(double... arguments)
setParams in interface SimilarityFunctionpublic boolean isSymmetric()
false (is asymmetric).isSymmetric in interface SimilarityFunctionpublic double sim(DoubleVector v1, DoubleVector v2)
v1 and v2. If SimilarityFunction.isSymmetric() is false, the ordering does matter.sim in interface SimilarityFunctionpublic double sim(IntegerVector v1, IntegerVector v2)
v1 and v2. If SimilarityFunction.isSymmetric() is false, the ordering does matter.sim in interface SimilarityFunctionpublic double sim(Vector v1, Vector v2)
v1 and v2. If SimilarityFunction.isSymmetric() is false, the ordering does matter.sim in interface SimilarityFunctionCopyright © 2012. All Rights Reserved.