Modifier and Type | Method and Description |
---|---|
Vector |
Coals.getVector(String term)
Returns the semantic vector for the provided word.
|
Modifier and Type | Class and Description |
---|---|
class |
VectorMapSemanticSpace<T extends Vector>
|
Modifier and Type | Method and Description |
---|---|
static <T extends Vector> |
Similarity.getSimilarity(Similarity.SimType similarityType,
T a,
T b)
Calculates the similarity of the two vectors using the provided
similarity measure.
|
Modifier and Type | Method and Description |
---|---|
Vector |
GenericTermDocumentVectorSpace.getVector(String word)
Returns the semantic vector for the provided word.
|
Vector |
CachingOnDiskSemanticSpace.getVector(String word)
Returns the semantic vector for the provided word.
|
Vector |
OnDiskSemanticSpace.getVector(String word)
Returns the semantic vector for the provided word.
|
Vector |
SemanticSpace.getVector(String word)
Returns the semantic vector for the provided word.
|
Vector |
StaticSemanticSpace.getVector(String term)
Returns the semantic vector for the provided word.
|
Modifier and Type | Method and Description |
---|---|
void |
DocumentVectorBuilder.add(DoubleVector dest,
Vector src,
int factor) |
static double |
Similarity.averageCommonFeatureRank(Vector a,
Vector b)
Computes the Average Common Feature Rank between the two feature arrays.
|
static double |
Similarity.averageCommonFeatureRank(Vector a,
Vector b)
Computes the Average Common Feature Rank between the two feature arrays.
|
static double |
Similarity.correlation(Vector a,
Vector b)
Returns the Pearson product-moment correlation coefficient of the two
Vector s. |
static double |
Similarity.correlation(Vector a,
Vector b)
Returns the Pearson product-moment correlation coefficient of the two
Vector s. |
static double |
Similarity.cosineSimilarity(Vector a,
Vector b)
Returns the cosine similarity of the two
DoubleVector . |
static double |
Similarity.cosineSimilarity(Vector a,
Vector b)
Returns the cosine similarity of the two
DoubleVector . |
static double |
Similarity.euclideanDistance(Vector a,
Vector b)
Returns the euclidian distance between two
Vector s. |
static double |
Similarity.euclideanDistance(Vector a,
Vector b)
Returns the euclidian distance between two
Vector s. |
static double |
Similarity.euclideanSimilarity(Vector a,
Vector b)
Returns the euclidian similiarty between two arrays of values.
|
static double |
Similarity.euclideanSimilarity(Vector a,
Vector b)
Returns the euclidian similiarty between two arrays of values.
|
static double |
Similarity.jaccardIndex(Vector a,
Vector b)
Computes the Jaccard
index comparing the similarity both
Vector s when viewed as
sets of samples. |
static double |
Similarity.jaccardIndex(Vector a,
Vector b)
Computes the Jaccard
index comparing the similarity both
Vector s when viewed as
sets of samples. |
static double |
Similarity.kendallsTau(Vector a,
Vector b)
Computes Kendall's
tau of the values in the two vectors.
|
static double |
Similarity.kendallsTau(Vector a,
Vector b)
Computes Kendall's
tau of the values in the two vectors.
|
static double |
Similarity.klDivergence(Vector a,
Vector b)
Computes the K-L Divergence of two probability distributions
A
and B where the vectors a and b correspond to
n samples from each respective distribution. |
static double |
Similarity.klDivergence(Vector a,
Vector b)
Computes the K-L Divergence of two probability distributions
A
and B where the vectors a and b correspond to
n samples from each respective distribution. |
static double |
Similarity.linSimilarity(Vector a,
Vector b)
Computes the lin similarity measure, which is motivated by information
theory priniciples.
|
static double |
Similarity.linSimilarity(Vector a,
Vector b)
Computes the lin similarity measure, which is motivated by information
theory priniciples.
|
static double |
Similarity.spearmanRankCorrelationCoefficient(Vector a,
Vector b)
Computes the Spearman rank correlation coefficient for the two
Vector s. |
static double |
Similarity.spearmanRankCorrelationCoefficient(Vector a,
Vector b)
Computes the Spearman rank correlation coefficient for the two
Vector s. |
static double |
Similarity.tanimotoCoefficient(Vector a,
Vector b)
Returns the Tanimoto coefficient of the two
Vector instances. |
static double |
Similarity.tanimotoCoefficient(Vector a,
Vector b)
Returns the Tanimoto coefficient of the two
Vector instances. |
void |
SemanticSpaceWriter.write(String word,
Vector vector)
Writes the provided word and vector to the
SemanticSpace on disk. |
Modifier and Type | Class and Description |
---|---|
class |
DefaultDependencyPermutationFunction<T extends Vector>
An default
DependencyPermutationFunction for permuting a Vector based on a dependecny path, represented as a list of DependencyRelations s. |
interface |
DependencyPermutationFunction<T extends Vector>
An interface for permuting a
Vector based on a dependecny path,
represented as a list of DependencyRelation s. |
class |
RelationPermutationFunction<T extends Vector>
An default
DependencyPermutationFunction for permuting a Vector based on a dependecny path, represented as a list of DependencyRelation s. |
class |
RelationSumPermutationFunction<T extends Vector>
An default
DependencyPermutationFunction for permuting a Vector based on a dependecny path, represented as a list of DependencyRelation s. |
Modifier and Type | Method and Description |
---|---|
Vector |
DependencyRandomIndexing.getVector(String term)
Returns the semantic vector for the provided word.
|
Modifier and Type | Method and Description |
---|---|
Vector |
DependencyVectorSpace.getVector(String term)
Returns the semantic vector for the provided word.
|
Modifier and Type | Method and Description |
---|---|
SparseArray<String> |
ExplicitSemanticAnalysis.getDocumentDescriptors(Vector documentVector)
Returns a
SparseArray containing document labels for any non zero
value in the given Vector . |
Modifier and Type | Method and Description |
---|---|
Vector |
Grefenstette.getVector(String word)
Returns the semantic vector for the provided word.
|
Modifier and Type | Method and Description |
---|---|
Vector |
HyperspaceAnalogueToLanguage.getVector(String word)
Returns the semantic vector for the provided word.
|
Modifier and Type | Interface and Description |
---|---|
interface |
PermutationFunction<T extends Vector>
An interface for functions that permute the ordering of
TernaryVector s. |
Modifier and Type | Method and Description |
---|---|
Vector |
WindowedPermutationFunction.permute(Vector v,
int numPermutations)
Permutes the provided
TernaryVector the specified number of
times. |
Vector |
DefaultPermutationFunction.permute(Vector v,
int numPermutations)
Permutes the provided
TernaryVector the specified number of
times. |
Modifier and Type | Method and Description |
---|---|
Vector |
WindowedPermutationFunction.permute(Vector v,
int numPermutations)
Permutes the provided
TernaryVector the specified number of
times. |
Vector |
DefaultPermutationFunction.permute(Vector v,
int numPermutations)
Permutes the provided
TernaryVector the specified number of
times. |
Modifier and Type | Method and Description |
---|---|
Vector |
IncrementalSemanticAnalysis.getVector(String word)
Returns the semantic vector for the provided word.
|
Modifier and Type | Method and Description |
---|---|
int |
ClutoSparseMatrixBuilder.addColumn(Vector row)
Adds the vector values to the underlying matrix, updating the dimensions
as necessary and returning the index at which the column was added.
|
int |
SvdlibcSparseBinaryMatrixBuilder.addColumn(Vector col)
Adds the vector values to the underlying matrix, updating the dimensions
as necessary and returning the index at which the column was added.
|
int |
MatrixBuilder.addColumn(Vector column)
Adds the vector values to the underlying matrix, updating the dimensions
as necessary and returning the index at which the column was added.
|
int |
MatlabSparseMatrixBuilder.addColumn(Vector col)
Adds the vector values to the underlying matrix, updating the dimensions
as necessary and returning the index at which the column was added.
|
int |
ClutoDenseMatrixBuilder.addColumn(Vector row)
Adds the vector values to the underlying matrix, updating the dimensions
as necessary and returning the index at which the column was added.
|
Modifier and Type | Method and Description |
---|---|
Vector |
LocalityPreservingCooccurrenceSpace.getVector(String word)
Returns the semantic vector for the provided word.
|
Modifier and Type | Method and Description |
---|---|
Vector |
RandomIndexing.getVector(String word)
Returns the semantic vector for the provided word.
|
Modifier and Type | Method and Description |
---|---|
double |
CosineSimilarity.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
CosineSimilarity.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
EuclideanSimilarity.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
EuclideanSimilarity.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
JaccardIndex.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
JaccardIndex.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
TanimotoCoefficient.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
TanimotoCoefficient.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
DotProduct.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
DotProduct.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
KLDivergence.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
KLDivergence.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
GaussianKernel.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
GaussianKernel.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
LinSimilarity.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
LinSimilarity.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
OneSimilarity.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
OneSimilarity.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
SimilarityFunction.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
SimilarityFunction.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
KendallsTau.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
KendallsTau.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
AverageCommonFeatureRank.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
AverageCommonFeatureRank.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
PearsonCorrelation.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
PearsonCorrelation.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
SpearmanRankCorrelation.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
SpearmanRankCorrelation.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
PolynomialKernel.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
double |
PolynomialKernel.sim(Vector v1,
Vector v2)
Returns the similarity between
v1 and v2 . |
Modifier and Type | Method and Description |
---|---|
Vector |
StructuredVectorSpace.getVector(String term)
Returns the semantic vector for the provided word.
|
Modifier and Type | Method and Description |
---|---|
Vector |
TemporalSemanticSpace.getVector(String word)
Returns the provided word's semantic vector based on all temporal
occurrences.
|
Vector |
FileBasedTemporalSemanticSpace.getVector(String word)
Returns the provided word's semantic vector based on all temporal
occurrences.
|
Vector |
TemporalSemanticSpace.getVectorAfter(String word,
long startTime)
Returns the provided word's semantic vector based on all temporal
occurrences occurring on or after the provided timestamp (optional
operation).
|
Vector |
FileBasedTemporalSemanticSpace.getVectorAfter(String word,
long startTime)
Returns the provided word's semantic vector based on all temporal
occurrences occurring on or after the provided timestamp (optional
operation).
|
Vector |
TemporalSemanticSpace.getVectorBefore(String word,
long endTime)
Returns the provided word's semantic vector based on all temporal
occurrences before the provided timestamp (optional operation).
|
Vector |
FileBasedTemporalSemanticSpace.getVectorBefore(String word,
long endTime)
Returns the provided word's semantic vector based on all temporal
occurrences before the provided timestamp (optional operation).
|
Vector |
TemporalSemanticSpace.getVectorBetween(String word,
long startTime,
long endTime)
Returns the provided word's semantic vector based on all temporal
occurrences that happened on or after the start timestamp but before the
ending timestamp (optional operation).
|
Vector |
FileBasedTemporalSemanticSpace.getVectorBetween(String word,
long start,
long endTime)
Returns the provided word's semantic vector based on all temporal
occurrences that happened on or after the start timestamp but before the
ending timestamp (optional operation).
|
Modifier and Type | Method and Description |
---|---|
Vector |
OrderedTemporalRandomIndexing.getVector(String word)
Returns the provided word's semantic vector based on all temporal
occurrences.
|
Vector |
OrderedTemporalRandomIndexing.getVectorAfter(String word,
long startTime)
Not supported
|
Vector |
OrderedTemporalRandomIndexing.getVectorBefore(String word,
long endTime)
Not supported
|
Vector |
OrderedTemporalRandomIndexing.getVectorBetween(String word,
long startTime,
long endTime)
Not supported
|
Modifier and Type | Method and Description |
---|---|
SortedMultiMap<Double,String> |
NearestNeighborFinder.getMostSimilar(Vector v,
int numberOfSimilarWords)
Finds the k most similar words in the semantic space according to
the cosine similarity, returning a mapping from their similarity to the
word itself.
|
SortedMultiMap<Double,String> |
SimpleNearestNeighborFinder.getMostSimilar(Vector v,
int numberOfSimilarWords)
Finds the k most similar words in the semantic space according to
the cosine similarity, returning a mapping from their similarity to the
word itself.
|
SortedMultiMap<Double,String> |
PartitioningNearestNeighborFinder.getMostSimilar(Vector v,
int numberOfSimilarWords)
Finds the k most similar words in the semantic space according to
the cosine similarity, returning a mapping from their similarity to the
word itself.
|
Modifier and Type | Interface and Description |
---|---|
interface |
DoubleVector
An generalized interface for vectors.
|
interface |
IntegerVector
An Integer based Vector.
|
interface |
SparseDoubleVector
An interface for sparse
DoubleVector instances. |
interface |
SparseIntegerVector
An interface for sparse
IntegerVector instances. |
interface |
SparseVector<T extends Number>
An interface for
Vector implementations whose values are sparse and
that support access to only those indices with non-zero values. |
Modifier and Type | Class and Description |
---|---|
class |
AbstractDoubleVector
An abstract base class that provides default implementations of common
methods in
DoubleVector . |
class |
AbstractIntegerVector
An abstract base class that provides default implementations of common
methods in
IntegerVector . |
class |
AbstractVector<T extends Number>
An abstract base class that provides default implementations of common
methods in
Vector . |
class |
AmortizedSparseVector
An implementation of a sparse vector based on the Yale Sparse matrix format.
|
class |
AtomicSparseVector
A decorator of a
Vector which provides atomic concurrent access to
another Vector . |
class |
AtomicVector
A decorator of a
Vector which provides atomic concurrent access to
another Vector . |
class |
CompactSparseIntegerVector
A sparse
IntegerVector class whose data is back by a compact sparse
array. |
class |
CompactSparseVector
A
Vector instance that keeps only the non-zero values in memory,
thereby saving space at the expense of time. |
class |
DenseDynamicMagnitudeVector
A
Vector where all values are held in memory. |
class |
DenseIntVector
An
IntegerVector class whose data is back by an array. |
class |
DenseVector
A
Vector where all values are held in memory. |
class |
MaskedDoubleVectorView
A decorator that masked view of a
Vector through the use of a mapping
from new column indices to original column indices. |
class |
MaskedSparseDoubleVectorView
A decorator that masked view of a
SparseVector through the use of a
mapping from new column indices to original column indices. |
class |
ScaledDoubleVector
A decorator for
DoubleVector s that scales every value in a given
DoubleVector by some non zero scale. |
class |
ScaledSparseDoubleVector
A decorator for
SparseDoubleVector s that scales every value in a
given DoubleVector by some non zero scale. |
class |
SparseHashDoubleVector
A
SparseVector implementation backed by a Map . |
class |
SparseHashIntegerVector
A
SparseVector implementation backed by a HashMap . |
class |
SparseHashVector<T extends Number>
A
SparseVector implementation backed by a HashMap . |
class |
TernaryVector
An unmodifiable vector with ternary (+1, 0, -1) values.
|
Modifier and Type | Method and Description |
---|---|
static <T extends Vector> |
Vectors.instanceOf(T vector)
Creates a
Vector instance of the same type and length of the
provided vector. |
Modifier and Type | Method and Description |
---|---|
static Vector |
VectorMath.add(Vector vector1,
Vector vector2)
Adds the second
Vector to the first Vector and returns
the result. |
static Vector |
VectorMath.addUnmodified(Vector vector1,
Vector vector2)
Returns a new
Vector which is the summation of vector2
and vector1 . |
static Vector |
VectorMath.addWithScalars(DoubleVector vector1,
double weight1,
DoubleVector vector2,
double weight2)
Adds two
DoubleVector s with some scalar weight for each DoubleVector . |
static Vector |
VectorMath.addWithScalars(IntegerVector vector1,
int weight1,
IntegerVector vector2,
int weight2)
Adds two
IntegerVector s with some scalar weight for each Vector . |
static Vector |
VectorMath.addWithScalars(Vector vector1,
double weight1,
Vector vector2,
double weight2)
Adds two
Vector s with some scalar weight for each Vector . |
static Vector |
Vectors.copy(Vector dest,
Vector source)
Copies all of the values from one
Vector into another. |
static Vector |
Vectors.copyOf(Vector source)
Creates a copy of a given
Vector . |
static Vector |
Vectors.immutable(Vector vector)
Returns an immutable view of the given
Vector . |
static Vector |
VectorMath.multiply(Vector left,
Vector right)
Mulitplies the values in
left and right and store the
product in left . |
static Vector |
VectorMath.subtract(Vector vector1,
Vector vector2)
Subtracts the second
Vector fromt the first Vector and
returns the result. |
Modifier and Type | Method and Description |
---|---|
static Vector |
VectorMath.add(Vector vector1,
Vector vector2)
Adds the second
Vector to the first Vector and returns
the result. |
static Vector |
VectorMath.add(Vector vector1,
Vector vector2)
Adds the second
Vector to the first Vector and returns
the result. |
static Vector |
VectorMath.addUnmodified(Vector vector1,
Vector vector2)
Returns a new
Vector which is the summation of vector2
and vector1 . |
static Vector |
VectorMath.addUnmodified(Vector vector1,
Vector vector2)
Returns a new
Vector which is the summation of vector2
and vector1 . |
static Vector |
VectorMath.addWithScalars(Vector vector1,
double weight1,
Vector vector2,
double weight2)
Adds two
Vector s with some scalar weight for each Vector . |
static Vector |
VectorMath.addWithScalars(Vector vector1,
double weight1,
Vector vector2,
double weight2)
Adds two
Vector s with some scalar weight for each Vector . |
static DoubleVector |
Vectors.asDouble(Vector v)
Returns a view over the given
Vector as a DoubleVector . |
static Vector |
Vectors.copy(Vector dest,
Vector source)
Copies all of the values from one
Vector into another. |
static Vector |
Vectors.copy(Vector dest,
Vector source)
Copies all of the values from one
Vector into another. |
static Vector |
Vectors.copyOf(Vector source)
Creates a copy of a given
Vector . |
static double |
VectorMath.dotProduct(Vector x,
Vector y)
Computes the dot product,
x Ty of the two
vectors. |
static double |
VectorMath.dotProduct(Vector x,
Vector y)
Computes the dot product,
x Ty of the two
vectors. |
static boolean |
Vectors.equals(Vector v1,
Vector v2)
Returns
true if the two vectors are equal to one another. |
static boolean |
Vectors.equals(Vector v1,
Vector v2)
Returns
true if the two vectors are equal to one another. |
static Vector |
Vectors.immutable(Vector vector)
Returns an immutable view of the given
Vector . |
static Vector |
VectorMath.multiply(Vector left,
Vector right)
Mulitplies the values in
left and right and store the
product in left . |
static Vector |
VectorMath.multiply(Vector left,
Vector right)
Mulitplies the values in
left and right and store the
product in left . |
static Vector |
VectorMath.subtract(Vector vector1,
Vector vector2)
Subtracts the second
Vector fromt the first Vector and
returns the result. |
static Vector |
VectorMath.subtract(Vector vector1,
Vector vector2)
Subtracts the second
Vector fromt the first Vector and
returns the result. |
static String |
VectorIO.toString(Vector vector)
Convert a
Vector to a String where values are separated
by spaces. |
Modifier and Type | Method and Description |
---|---|
Vector |
EvaluationWordsi.getVector(String term)
Returns the semantic vector for the provided word.
|
Copyright © 2012. All Rights Reserved.