Package | Description |
---|---|
edu.ucla.sspace.clustering | |
edu.ucla.sspace.clustering.seeding | |
edu.ucla.sspace.common | |
edu.ucla.sspace.matrix | |
edu.ucla.sspace.similarity | |
edu.ucla.sspace.util |
Modifier and Type | Field and Description |
---|---|
static SimilarityFunction |
FastStreamingKMeans.DEFAULT_SIMILARITY_FUNCTION
The default similarity function is in the inverse of the square of the
Euclidean distances, which preserves all the properties specified in the
Shindler et al (2011) paper.
|
Modifier and Type | Method and Description |
---|---|
Assignments |
Streemer.cluster(Matrix matrix,
int numClusters,
double backgroundClusterPerc,
double similarityThreshold,
int minClusterSize,
SimilarityFunction simFunc) |
Assignments |
FastStreamingKMeans.cluster(Matrix matrix,
int numClusters,
int kappa,
double beta,
SimilarityFunction simFunc)
Clusters the rows of the provided matrix into the specified number of
clusters in a single pass using the parameters to guide how clusters are
formed.
|
Constructor and Description |
---|
NeighborChainAgglomerativeClustering(NeighborChainAgglomerativeClustering.ClusterLink method,
SimilarityFunction simFunc)
Creates a
NeighborChainAgglomerativeClustering with the specified
minimum similarity threshold. |
Constructor and Description |
---|
GeneralizedOrssSeed(SimilarityFunction simFunc) |
Modifier and Type | Method and Description |
---|---|
static SimilarityFunction |
Similarity.getSimilarityFunction(Similarity.SimType similarityType) |
Modifier and Type | Method and Description |
---|---|
SortedMultiMap<Double,Integer> |
RowComparator.getMostSimilar(Matrix m,
int row,
int kNearestRows,
SimilarityFunction simFunction)
Compares the specified row to all other rows, returning the k-nearest
rows according to the similarity metric.
|
void |
MinSimilarityAffinityMatrixCreator.setFunctions(SimilarityFunction edgeSim,
SimilarityFunction kernelSim)
Sets the
SimilarityFunction s to be used for selecting edges and
then weighting edges. |
void |
AffinityMatrixCreator.setFunctions(SimilarityFunction edgeSim,
SimilarityFunction kernelSim)
Sets the
SimilarityFunction s to be used for selecting edges and
then weighting edges. |
void |
NearestNeighborAffinityMatrixCreator.setFunctions(SimilarityFunction edgeSim,
SimilarityFunction kernelSim)
Sets the
SimilarityFunction s to be used for selecting edges and
then weighting edges. |
Modifier and Type | Class and Description |
---|---|
class |
AbstractSymmetricSimilarityFunction
A base implementation for any symmetic
SimilarityFunction that
requires no parameters. |
class |
AverageCommonFeatureRank
Computes the Average Common Feature Rank between two feature vectors.
|
class |
CosineSimilarity
Returns the cosine similarity between any two
Vector s. |
class |
DotProduct
Returns the dot product of the two vectors.
|
class |
EuclideanSimilarity
Returns the Euclidean Similarity between any two
Vector s. |
class |
GaussianKernel
Returns the Gaussing kernel weighting of two vectors using a parameter to
weight the distance between the two vectors.
|
class |
JaccardIndex
Returns the Jaccard Index between any two
Vector s. |
class |
KendallsTau
A functional class for computing Kendall's tau of the
values in the two vectors.
|
class |
KLDivergence
Returns the KL Divergence between any two probability distributions
represented as
Vector s. |
class |
LinSimilarity
Returns the Lin Similarity between any two
Vector s. |
class |
OneSimilarity
Returns
1 , always. |
class |
PearsonCorrelation
Returns the Pearson Correlation between any two
Vector s. |
class |
PolynomialKernel
Returns the dot product of the two vectors raised to a specified power.
|
class |
SpearmanRankCorrelation
Returns the Spearman Rank Correlation between any two
Vector s. |
class |
TanimotoCoefficient
Returns the Tanimoto
Coefficient between any two
Vector s. |
Constructor and Description |
---|
SimpleNearestNeighborFinder(SemanticSpace sspace,
SimilarityFunction similarity)
Creates this
SimpleNearestNeighborFinder with as many threads as
processings and using the provided similarity function to compare words. |
SimpleNearestNeighborFinder(SemanticSpace sspace,
SimilarityFunction similarity,
int numThreads)
Creates this
SimpleNearestNeighborFinder with the specified
number of threads and using the provided similarity function to compare
words. |
Copyright © 2012. All Rights Reserved.