Modifier and Type | Field and Description |
---|---|
protected Matrix |
BaseSpectralCut.dataMatrix
The
Matrix containing the data points. |
protected Matrix |
BaseSpectralCut.leftSplit
The data points in the left region.
|
protected Matrix |
BaseSpectralCut.rightSplit
The data points in the right region.
|
Modifier and Type | Method and Description |
---|---|
protected static <T extends Matrix> |
BaseSpectralCut.computeMatrixRowSum(T matrix)
Compute the row sums of the values in
matrix and returns the
values in a vector of length matrix.columns() . |
Modifier and Type | Method and Description |
---|---|
Matrix |
EigenCut.getLeftCut()
Returns the data set in the first (left) region.
|
Matrix |
BaseSpectralCut.getLeftCut()
Returns the data set in the first (left) region.
|
Matrix |
EigenCut.getRightCut()
Returns the data set in the second (right) region.
|
Matrix |
BaseSpectralCut.getRightCut()
Returns the data set in the second (right) region.
|
Modifier and Type | Method and Description |
---|---|
List<Merge> |
HierarchicalAgglomerativeClustering.buildDendogram(Matrix m,
HierarchicalAgglomerativeClustering.ClusterLinkage linkage,
Similarity.SimType similarityFunction)
Builds a dendrogram of the rows of similarity matrix by iteratelyve
linking each row according to the linkage policy in a bottom up manner.
|
List<Merge> |
HierarchicalAgglomerativeClustering.buildDendrogram(Matrix similarityMatrix,
HierarchicalAgglomerativeClustering.ClusterLinkage linkage)
Builds a dendrogram of the rows of similarity matrix by iteratively
linking each row according to the linkage policy in a bottom up manner.
|
Assignments |
SpectralClustering.cluster(Matrix matrix)
Returns the Cluster
Assignments of each data point in matrix . |
Assignments |
SpectralClustering.cluster(Matrix matrix,
int maxClusters,
boolean useKMeans)
Returns the Cluster for each data point in
matrix . |
Assignments |
ClutoClustering.cluster(Matrix matrix,
int numClusters,
ClutoClustering.Method clusterMethod,
ClutoClustering.Criterion criterionMethod)
Clusters the set of rows in the given
Matrix into a specified
number of clusters using the specified CLUTO clustering method. |
Assignments |
Streemer.cluster(Matrix matrix,
int numClusters,
double backgroundClusterPerc,
double similarityThreshold,
int minClusterSize,
SimilarityFunction simFunc) |
static Assignments |
DirectClustering.cluster(Matrix matrix,
int numClusters,
int numRepetitions)
|
static Assignments |
DirectClustering.cluster(Matrix matrix,
int numClusters,
int numRepetitions,
CriterionFunction criterion)
|
Assignments |
FastStreamingKMeans.cluster(Matrix matrix,
int numClusters,
int kappa,
double beta,
SimilarityFunction simFunc)
Clusters the rows of the provided matrix into the specified number of
clusters in a single pass using the parameters to guide how clusters are
formed.
|
static Assignments |
DirectClustering.cluster(Matrix matrix,
int numClusters,
int numRepetitions,
KMeansSeed seedType,
CriterionFunction criterion)
|
Assignments |
AutomaticStopClustering.cluster(Matrix m,
int numClusters,
Properties props)
Clusters the set of rows in the given
Matrix into the specified
number of clusters. |
Assignments |
FastStreamingKMeans.cluster(Matrix matrix,
int numClusters,
Properties props)
Clusters the set of rows in the given
Matrix into the specified
number of clusters and using the default values for beta, kappa, and the
SimilarityFunction , unless otherwise specified in the properties. |
Assignments |
Streemer.cluster(Matrix matrix,
int numClusters,
Properties props)
Clusters the set of rows in the given
Matrix into the specified
number of clusters. |
Assignments |
BisectingKMeans.cluster(Matrix dataPoints,
int numClusters,
Properties props)
Clusters the set of rows in the given
Matrix into the specified
number of clusters. |
Assignments |
HierarchicalAgglomerativeClustering.cluster(Matrix m,
int numClusters,
Properties props)
Clusters the set of rows in the given
Matrix into the specified
number of clusters. |
Assignments |
CKVWSpectralClustering03.cluster(Matrix matrix,
int numClusters,
Properties props)
Clusters the set of rows in the given
Matrix into the specified
number of clusters. |
Assignments |
ClutoClustering.cluster(Matrix matrix,
int numClusters,
Properties properties)
Clusters the set of rows in the given
Matrix into the specified
number of clusters. |
Assignments |
DirectClustering.cluster(Matrix matrix,
int numClusters,
Properties properties)
Clusters the set of rows in the given
Matrix into the specified
number of clusters. |
Assignments |
LinkClustering.cluster(Matrix matrix,
int numClusters,
Properties props)
Ignores the specified number of clusters and returns the
clustering solution according to the partition density.
|
Assignments |
CKVWSpectralClustering06.cluster(Matrix matrix,
int numClusters,
Properties props)
Clusters the set of rows in the given
Matrix into the specified
number of clusters. |
Assignments |
ClusteringByCommittee.cluster(Matrix m,
int numClusters,
Properties props)
Ignores the provided number of clusters and clusters the rows of
the provided matrix using the CBC algorithm.
|
Assignments |
NeighborChainAgglomerativeClustering.cluster(Matrix m,
int numClusters,
Properties props)
Returns the agglomerative clustering result using
NeighborChainAgglomerativeClustering.ClusterLink and
SimilarityFunction specified from the constructor. |
Assignments |
Clustering.cluster(Matrix matrix,
int numClusters,
Properties props)
Clusters the set of rows in the given
Matrix into the specified
number of clusters. |
Assignments |
DataMatrixLinkClustering.cluster(Matrix matrix,
int numClusters,
Properties props) |
Assignments |
GapStatistic.cluster(Matrix m,
int maxClusters,
Properties props)
Clusters the set of rows in the given
Matrix into the specified
number of clusters. |
Assignments |
AutomaticStopClustering.cluster(Matrix matrix,
Properties props)
Clusters the set of rows in the given
Matrix without a specified
number of clusters (optional operation). |
Assignments |
FastStreamingKMeans.cluster(Matrix matrix,
Properties props)
Throws an
UnsupportedOperationException if called. |
Assignments |
Streemer.cluster(Matrix matrix,
Properties props)
Clusters the set of rows in the given
Matrix without a specified
number of clusters |
Assignments |
BisectingKMeans.cluster(Matrix dataPoints,
Properties props)
Not implemented.
|
Assignments |
HierarchicalAgglomerativeClustering.cluster(Matrix matrix,
Properties props)
Clusters the set of rows in the given
Matrix without a specified
number of clusters (optional operation). |
Assignments |
CKVWSpectralClustering03.cluster(Matrix matrix,
Properties props)
Clusters the set of rows in the given
Matrix without a specified
number of clusters (optional operation). |
Assignments |
ClutoClustering.cluster(Matrix matrix,
Properties properties)
Throws an
UnsupportedOperationException if called, as CLUTO
requires the number of clusters to be specified. |
Assignments |
DirectClustering.cluster(Matrix matrix,
Properties properties)
Throws
UnsupportedOperationException . |
Assignments |
LinkClustering.cluster(Matrix matrix,
Properties props)
Clusters the set of rows in the given
Matrix without a specified
number of clusters (optional operation). |
Assignments |
CKVWSpectralClustering06.cluster(Matrix matrix,
Properties props)
Clusters the set of rows in the given
Matrix without a specified
number of clusters (optional operation). |
Assignments |
ClusteringByCommittee.cluster(Matrix m,
Properties props)
Clusters the rows of
m according to the CBC algorithm, using
props to specify the configurable parameters of the algorithm. |
Assignments |
NeighborChainAgglomerativeClustering.cluster(Matrix m,
Properties props)
Unsupported
|
Assignments |
Clustering.cluster(Matrix matrix,
Properties props)
Clusters the set of rows in the given
Matrix without a specified
number of clusters (optional operation). |
Assignments |
DataMatrixLinkClustering.cluster(Matrix matrix,
Properties props) |
Assignments |
GapStatistic.cluster(Matrix matrix,
Properties props)
Clusters the set of rows in the given
Matrix without a specified
number of clusters (optional operation). |
static Assignments |
NeighborChainAgglomerativeClustering.clusterAdjacencyMatrix(Matrix adj,
NeighborChainAgglomerativeClustering.ClusterLink method,
int numClusters)
Clusters the points represented as an adjacency matrix in
adj
using the supplied ClusterLink method into numCluster . |
static int[] |
HierarchicalAgglomerativeClustering.clusterRows(Matrix m,
double clusterSimilarityThreshold,
HierarchicalAgglomerativeClustering.ClusterLinkage linkage,
Similarity.SimType similarityFunction)
Clusters all rows in the matrix using the specified cluster similarity
measure for comparison and threshold for when to stop clustering.
|
void |
EigenCut.computeCut(Matrix matrix)
Compute the cut with the lowest conductance for the data set.
|
void |
BaseSpectralCut.computeCut(Matrix matrix)
Compute the cut with the lowest conductance for the data set.
|
protected static int |
BaseSpectralCut.computeCut(Matrix matrix,
DoubleVector rho,
double rhoSum,
DoubleVector matrixRowSums)
Returns the index at which
matrix should be cut such that the
conductance between the two partitions is minimized. |
protected static void |
BaseSpectralCut.computeMatrixDotV(Matrix matrix,
DoubleVector newV,
DoubleVector v)
Computes the dot product between a given matrix and a given vector
newV . |
protected static DoubleVector |
BaseSpectralCut.computeMatrixTransposeV(Matrix matrix,
DoubleVector v)
Returns the dot product between the transpose of a given matrix and a
given vector.
|
DoubleVector |
EigenCut.computeRhoSum(Matrix matrix)
Computes the similarity between each data point and centroid of the data
set.
|
DoubleVector |
BaseSpectralCut.computeRhoSum(Matrix matrix)
Computes the similarity between each data point and centroid of the data
set.
|
protected abstract DoubleVector |
BaseSpectralCut.computeSecondEigenVector(Matrix matrix,
int vectorLength)
Returns a
DoubleVector representing the secord largest eigen
vector for the data set. |
protected DoubleVector |
CKVWSpectralClustering03.SpectralCut.computeSecondEigenVector(Matrix matrix,
int vectorLength)
Returns a
DoubleVector representing the secord largest eigen
vector for the data set. |
protected DoubleVector |
CKVWSpectralClustering06.SuperSpectralCut.computeSecondEigenVector(Matrix matrix,
int vectorLength)
Returns a
DoubleVector representing the secord largest eigen
vector for the data set. |
static double |
BaseSpectralCut.kMeansObjective(int numClusters,
int[] assignments,
Matrix data)
Returns the K-Means objective over an arbitrary clustering assignment for
the data set.
|
static int[] |
HierarchicalAgglomerativeClustering.partitionRows(Matrix m,
int numClusters,
HierarchicalAgglomerativeClustering.ClusterLinkage linkage,
Similarity.SimType similarityFunction)
Clusters all rows in the matrix using the specified cluster similarity
measure for comparison and stopping when the number of clusters is equal
to the specified number.
|
Constructor and Description |
---|
Assignments(int numClusters,
Assignment[] initialAssignments,
Matrix matrix)
Creates a new
Assignments instance that takes ownership of the
initialAssignments array. |
Assignments(int numClusters,
int numAssignments,
Matrix matrix)
|
Modifier and Type | Method and Description |
---|---|
void |
CriterionFunction.setup(Matrix m,
int[] initialAssignments,
int numClusters)
Creates the cluster centroids and any other meta data needed by this
CriterionFunction . |
void |
BaseFunction.setup(Matrix m,
int[] initialAssignments,
int numClusters)
Creates the cluster centroids and any other meta data needed by this
CriterionFunction . |
void |
HybridBaseFunction.setup(Matrix m,
int[] initialAssignments,
int numClusters)
Creates the cluster centroids and any other meta data needed by this
CriterionFunction . |
protected void |
BaseFunction.subSetup(Matrix m)
Setup any extra information needed before computing the cost values for
each cluster.
|
protected void |
E1Function.subSetup(Matrix m)
Setup any extra information needed before computing the cost values for
each cluster.
|
protected void |
G1Function.subSetup(Matrix m)
Setup any extra information needed before computing the cost values for
each cluster.
|
Modifier and Type | Method and Description |
---|---|
DoubleVector[] |
OrssSeed.chooseSeeds(int numCentroids,
Matrix dataPoints)
Returns an array of length
numCentroids that contains centroids
composed of either vectors from dataPoints or a linear combination
of vectors from dataPoints . |
DoubleVector[] |
KMeansPlusPlusSeed.chooseSeeds(int numCentroids,
Matrix dataPoints)
Selects the best scattered
numCentroids data points from dataPoints . |
DoubleVector[] |
GeneralizedOrssSeed.chooseSeeds(int k,
Matrix dataPoints)
Selects
k rows of dataPoints to be seeds of a
k-means instance. |
DoubleVector[] |
RandomSeed.chooseSeeds(int numCentroids,
Matrix dataPoints)
Returns an array of length
numCentroids that contains centroids
composed of either vectors from dataPoints or a linear combination
of vectors from dataPoints . |
DoubleVector[] |
KMeansSeed.chooseSeeds(int numCentroids,
Matrix dataPoints)
Returns an array of length
numCentroids that contains centroids
composed of either vectors from dataPoints or a linear combination
of vectors from dataPoints . |
DoubleVector[] |
GeneralizedOrssSeed.chooseSeeds(Matrix dataPoints,
int k,
int[] weights)
Selects
k rows of dataPoints , weighted by the specified
amount, to be seeds of a k-means instance. |
Modifier and Type | Field and Description |
---|---|
protected Matrix |
GenericTermDocumentVectorSpace.wordSpace
The word space of the term document based word space model.
|
Modifier and Type | Interface and Description |
---|---|
interface |
AtomicMatrix
An interface for any
Matrix which wants to support atomic behavior. |
interface |
SparseMatrix
An interface for sparse
Matrix implementations whose backing data
storage permits accessing rows and columns with SparseVector objects. |
Modifier and Type | Class and Description |
---|---|
class |
AbstractMatrix
An abstract
Matrix class that provides common implementations for
generic matrix operations. |
class |
ArrayMatrix
A
Matrix backed by an array. |
class |
AtomicGrowingMatrix
A concurrent, thread-safe, growable
Matrix class. |
class |
AtomicGrowingSparseHashMatrix
A concurrent, thread-safe, growable
SparseMatrix class that is
optimized for operations only access one value of the matrix at a time. |
class |
AtomicGrowingSparseMatrix
A concurrent, thread-safe, growable
SparseMatrix class. |
class |
CellMaskedMatrix
This
Matrix decorator allows every row and column index to be
remapped to new indices. |
class |
CellMaskedSparseMatrix
This
SparseMatrix decorator allows every row and column index to be
remapped to new indices. |
class |
DiagonalMatrix
A special-case
Matrix implementation for diagonal matrices. |
class |
GrowingSparseMatrix
A growing sparse
Matrix based on the Yale Sparse Matrix Format. |
class |
OnDiskMatrix
A Matrix implementation that uses a binary file to read and write Returns a
copy of the specified rowvalues of the matrix.
|
class |
RowMaskedMatrix
A tiled view of a
Matrix instance where selected rows of the instance
a represented as a single, contiguous matrix. |
class |
RowScaledMatrix
A decorator over
Matrix s. |
class |
RowScaledSparseMatrix
A decorator over
SparseMatrix s. |
class |
SparseHashMatrix
A
SparseMatrix backed by vectors that provide amortized O(1) access
to their elements. |
class |
SparseOnDiskMatrix
A
SparseMatrix implementation that uses a binary file to read and
write. |
class |
SparseRowMaskedMatrix
A tiled view of a
SparseMatrix instance where selected rows of the
instance a represented as a single, contiguous matrix. |
class |
SparseSymmetricMatrix
A decorator around a
SparseMatrix that keeps only the upper
triangular values while providing a symmetric view of the data. |
class |
SymmetricMatrix
A symmetric dense matrix that only stores the values of the lower triangular.
|
class |
SynchronizedMatrix
A
Matrix decorator class that provides thread safe access to a
backing Matrix instance. |
class |
SynchronizedSparseMatrix
A
SparseMatrix decorator class that provides thread safe access to a
backing SparseMatrix instance. |
class |
TransposedMatrix
A
Matrix decorator class that tranposes the data in the backing
matrix. |
class |
YaleSparseMatrix
A sparse
Matrix based on the Yale Sparse Matrix Format, as
implemented in CompactSparseVector . |
Modifier and Type | Method and Description |
---|---|
static <T extends DoubleVector> |
Matrices.asMatrix(List<T> vectors)
Returns a
Matrix from a list of DoubleVector s. |
static Matrix |
Statistics.average(Matrix m,
Statistics.Dimension dim)
Return a matrix containing the averages for the dimension
specificed.
|
static Matrix |
Statistics.average(Matrix m,
Statistics.Dimension dim,
int errorCode)
Return a matrix containing the averages for the dimension
specificed.
|
Matrix |
RowMaskedMatrix.backingMatrix()
Returns the
backingMatrix that is being masked. |
Matrix |
MatrixFactorization.classFeatures()
Returns the latent class by feature
Matrix . |
static Matrix |
Matrices.copy(Matrix matrix)
Returns a copied version of a given matrix.
|
static Matrix |
Matrices.copyTo(Matrix matrix,
Matrix output)
Copies values from
matrix to output and returns output . |
static Matrix |
Matrices.create(int rows,
int cols,
boolean isDense)
Creates a matrix of the given dimensions and selects the matrix
implementation by considering the size and density of the new matrix with
respect to the available memory for the JVM.
|
static Matrix |
Matrices.create(int rows,
int cols,
Matrix.Type matrixType)
Creates a new
Matrix based on the provided type, with the
provided dimensions |
Matrix |
MatrixFactorization.dataClasses()
Returns the data point by latent class
Matrix . |
Matrix |
MatrixFile.load()
Loads the matrix from disk and returns a copy of its data.
|
static Matrix |
Matrices.multiply(Matrix m1,
Matrix m2) |
static Matrix |
LocalityPreservingProjection.project(Matrix m,
MatrixFile affinityMatrix,
int dimensions)
Projects the rows of the input matrix into a lower dimensional subspace
using the Locality Preserving Projection (LPP) algorithm and the affinity
matrix as a guide to locality.
|
static Matrix |
LocalityPreservingProjection.project(Matrix m,
Matrix affinityMatrix,
int dimensions)
Projects the rows of the input matrix into a lower dimensional subspace
using the Locality Preserving Projection (LPP) algorithm and the affinity
matrix as a guide to locality.
|
static Matrix |
MatrixIO.readMatrix(File matrix,
MatrixIO.Format format)
Converts the contents of a matrix file as a
Matrix object, using
the provided format as a hint for what kind to create. |
static Matrix |
MatrixIO.readMatrix(File matrix,
MatrixIO.Format format,
Matrix.Type matrixType)
Converts the contents of a matrix file as a
Matrix object, using
the provided type description as a hint for what kind to create. |
static Matrix |
MatrixIO.readMatrix(File matrix,
MatrixIO.Format format,
Matrix.Type matrixType,
boolean transposeOnRead)
Converts the contents of a matrix file as a
Matrix object, using
the provided type description as a hint for what kind to create. |
static Matrix |
Matrices.resize(Matrix matrix,
int rows,
int columns)
Returns a new
Matrix that has been resized from the original,
truncating values if smaller, or adding zero elements if larger. |
static Matrix |
Statistics.std(Matrix m,
Matrix average,
Statistics.Dimension dim)
Return a matrix containing the standard deviation for the dimension
specificed.
|
static Matrix |
Statistics.std(Matrix m,
Matrix average,
Statistics.Dimension dim,
int errorCode)
Return a matrix containing the standard deviation for the dimension
specificed.
|
static Matrix[] |
SVD.svd(File matrix,
int dimensions)
Deprecated.
|
static Matrix[] |
SVD.svd(File matrix,
MatrixIO.Format format,
int dimensions)
Deprecated.
|
static Matrix[] |
SvdlibjDriver.svd(File matrix,
MatrixIO.Format format,
int dimensions)
Computes the SVD of the matrix in the provided file in the specified
format.
|
static Matrix[] |
SVD.svd(File matrix,
SVD.Algorithm alg,
int dimensions)
Deprecated.
|
static Matrix[] |
SVD.svd(File matrix,
SVD.Algorithm alg,
MatrixIO.Format format,
int dimensions)
Deprecated.
|
static Matrix[] |
SVD.svd(Matrix m,
int dimensions)
Deprecated.
|
static Matrix[] |
SvdlibjDriver.svd(Matrix m,
int dimensions)
Computes the SVD of the matrix.
|
static Matrix[] |
SVD.svd(Matrix m,
SVD.Algorithm algorithm,
int dimensions)
Deprecated.
|
Matrix |
BaseTransform.transform(Matrix matrix)
Returns a transformed matrix based on the given matrix.
|
Matrix |
Transform.transform(Matrix input)
Returns a transformed matrix based on the given matrix.
|
Matrix |
NoTransform.transform(Matrix input)
Returns a transformed matrix based on the given matrix.
|
Matrix |
BaseTransform.transform(Matrix matrix,
Matrix transformed)
Returns a transformed matrix based on the given matrix.
|
Matrix |
Transform.transform(Matrix input,
Matrix output)
Returns a transformed matrix based on the given matrix.
|
Matrix |
NoTransform.transform(Matrix input,
Matrix output)
Returns a transformed matrix based on the given matrix.
|
static Matrix |
Matrices.transpose(Matrix matrix)
Returns the transpose of the input matrix, i.e.
|
Modifier and Type | Method and Description |
---|---|
static Matrix |
Statistics.average(Matrix m,
Statistics.Dimension dim)
Return a matrix containing the averages for the dimension
specificed.
|
static Matrix |
Statistics.average(Matrix m,
Statistics.Dimension dim,
int errorCode)
Return a matrix containing the averages for the dimension
specificed.
|
static void |
Normalize.byColumn(Matrix m)
Normalize the values of each column in the
Matrix to be
normalized by the length of each column. |
static void |
Normalize.byCorrelation(Matrix m,
boolean saveNegatives)
Normalize the values of the
Matrix by using the Pearson
correlation. |
static void |
Normalize.byLength(Matrix m)
Normalize the values of each row in the
Matrix to be
normalized by the l2 norm of each row. |
static void |
Normalize.byMagnitude(Matrix m)
Normalize the all the values values in the
Matrix to be
normalized by the l2 norm of the entire Matrix . |
static void |
Normalize.byRow(Matrix m)
Normalize the values of each row in
Matrix to be normalized by
the length of each row. |
MatrixFile |
MinSimilarityAffinityMatrixCreator.calculate(Matrix input)
Computes the affinity matrix for the input matrix according to the
specified similarity metrics, returning the result as a file on disk.
|
MatrixFile |
AffinityMatrixCreator.calculate(Matrix input)
Computes the affinity matrix for the input matrix according to the
specified similarity metrics, returning the result as a file on disk.
|
MatrixFile |
NearestNeighborAffinityMatrixCreator.calculate(Matrix input)
Computes the affinity matrix for the input matrix according to the
specified similarity metrics, returning the result as a file on disk.
|
static Matrix |
Matrices.copy(Matrix matrix)
Returns a copied version of a given matrix.
|
static Matrix |
Matrices.copyTo(Matrix matrix,
Matrix output)
Copies values from
matrix to output and returns output . |
static TransformStatistics.MatrixStatistics |
TransformStatistics.extractStatistics(Matrix matrix)
Extracts the full row, column, and matrix summations based on entries in
the given
Matrix . |
static TransformStatistics.MatrixStatistics |
TransformStatistics.extractStatistics(Matrix matrix,
boolean countRowOccurrances,
boolean countColumnOccurrances)
Extracts the row, column, and matrix summations based on entries in
the given
Matrix . |
SortedMultiMap<Double,Integer> |
RowComparator.getMostSimilar(Matrix m,
int row,
int kNearestRows,
Similarity.SimType similarityType)
Compares the specified row to all other rows, returning the k-nearest
rows according to the similarity metric.
|
SortedMultiMap<Double,Integer> |
RowComparator.getMostSimilar(Matrix m,
int row,
int kNearestRows,
SimilarityFunction simFunction)
Compares the specified row to all other rows, returning the k-nearest
rows according to the similarity metric.
|
protected GlobalTransform |
CorrelationTransform.getTransform(Matrix matrix)
Returns a
GlobalTransform for a Matrix . |
protected GlobalTransform |
LogLikelihoodTransform.getTransform(Matrix matrix)
Returns a
GlobalTransform for a Matrix . |
protected GlobalTransform |
LogEntropyTransform.getTransform(Matrix matrix)
Returns a
GlobalTransform for a Matrix . |
protected GlobalTransform |
TfIdfTransform.getTransform(Matrix matrix)
Returns a
GlobalTransform for a Matrix . |
protected GlobalTransform |
PointWiseMutualInformationTransform.getTransform(Matrix matrix)
Returns a
GlobalTransform for a Matrix . |
protected abstract GlobalTransform |
BaseTransform.getTransform(Matrix matrix)
Returns a
GlobalTransform for a Matrix . |
protected GlobalTransform |
TfIdfDocStripedTransform.getTransform(Matrix matrix)
Returns a
GlobalTransform for a Matrix . |
protected GlobalTransform |
RowMagnitudeTransform.getTransform(Matrix matrix)
Returns a
GlobalTransform for a Matrix . |
static Matrix |
Matrices.multiply(Matrix m1,
Matrix m2) |
static Matrix |
LocalityPreservingProjection.project(Matrix m,
MatrixFile affinityMatrix,
int dimensions)
Projects the rows of the input matrix into a lower dimensional subspace
using the Locality Preserving Projection (LPP) algorithm and the affinity
matrix as a guide to locality.
|
static Matrix |
LocalityPreservingProjection.project(Matrix m,
Matrix affinityMatrix,
int dimensions)
Projects the rows of the input matrix into a lower dimensional subspace
using the Locality Preserving Projection (LPP) algorithm and the affinity
matrix as a guide to locality.
|
static Matrix |
Matrices.resize(Matrix matrix,
int rows,
int columns)
Returns a new
Matrix that has been resized from the original,
truncating values if smaller, or adding zero elements if larger. |
static Matrix |
Statistics.std(Matrix m,
Matrix average,
Statistics.Dimension dim)
Return a matrix containing the standard deviation for the dimension
specificed.
|
static Matrix |
Statistics.std(Matrix m,
Matrix average,
Statistics.Dimension dim,
int errorCode)
Return a matrix containing the standard deviation for the dimension
specificed.
|
static Matrix[] |
SVD.svd(Matrix m,
int dimensions)
Deprecated.
|
static Matrix[] |
SvdlibjDriver.svd(Matrix m,
int dimensions)
Computes the SVD of the matrix.
|
static Matrix[] |
SVD.svd(Matrix m,
SVD.Algorithm algorithm,
int dimensions)
Deprecated.
|
static AtomicMatrix |
Matrices.synchronizedMatrix(Matrix m)
Returns a synchronized (thread-safe) matrix backed by the provided
Matrix . |
Matrix |
BaseTransform.transform(Matrix matrix)
Returns a transformed matrix based on the given matrix.
|
Matrix |
Transform.transform(Matrix input)
Returns a transformed matrix based on the given matrix.
|
Matrix |
NoTransform.transform(Matrix input)
Returns a transformed matrix based on the given matrix.
|
Matrix |
BaseTransform.transform(Matrix matrix,
Matrix transformed)
Returns a transformed matrix based on the given matrix.
|
Matrix |
Transform.transform(Matrix input,
Matrix output)
Returns a transformed matrix based on the given matrix.
|
Matrix |
NoTransform.transform(Matrix input,
Matrix output)
Returns a transformed matrix based on the given matrix.
|
static Matrix |
Matrices.transpose(Matrix matrix)
Returns the transpose of the input matrix, i.e.
|
static void |
MatrixIO.writeMatrix(Matrix matrix,
File output,
MatrixIO.Format format)
Writes the matrix to the specified output file in the provided format
|
Constructor and Description |
---|
CellMaskedMatrix(Matrix matrix,
int[] rowMaskMap,
int[] colMaskMap)
Creates a new
CellMaskedMatrix from a given Matrix and
maps, one for the row indices and one for the column indices. |
CorrelationTransform.CorrelationGlobalTransform(Matrix matrix)
Creates an instance of
CorrelationTransform from a Matrix . |
LogEntropyTransform.LogEntropyGlobalTransform(Matrix matrix)
Creates an instance of
LogEntropyGlobalTransform from a
Matrix . |
LogLikelihoodTransform.LogLikelihoodGlobalTransform(Matrix matrix)
Creates an instance of
LogLikelihoodTransform from a given
Matrix . |
PointWiseMutualInformationTransform.PointWiseMutualInformationGlobalTransform(Matrix matrix)
Creates an instance of
PointWiseMutualInformationTransform
from a given Matrix . |
RowMagnitudeTransform.RowMagnitudeGlobalTransform(Matrix matrix)
Creates an instance of
RowMagnitudeGlobalTransform from a
Matrix . |
RowMaskedMatrix(Matrix matrix,
BitSet included)
Creates a partial view of the provided matrix using the bits set to
true as the rows that should be included |
RowMaskedMatrix(Matrix matrix,
int[] reordering)
Creates a partial view of the provided matrix using the integers in the
array of indices.
|
RowMaskedMatrix(Matrix matrix,
LinkedHashSet<Integer> included)
Creates a partial view of the provided matrix using the integers in the
ordered set.
|
RowMaskedMatrix(Matrix matrix,
Set<Integer> included)
Creates a partial view of the provided matrix using the integers in the
set to specify which rows should be included in the matrix.
|
RowScaledMatrix(Matrix matrix,
DoubleVector v)
Creates a
RowScaledMatrix that provides scaled read only access
to the provided Matrix instance. |
SynchronizedMatrix(Matrix matrix)
Creates a
SynchronizedMatrix that provides thread-safe access to
the provided Matrix instance. |
TfIdfDocStripedTransform.TfIdfGlobalTransform(Matrix matrix)
Creates an instance of
TfIdfGlobalTransform from a Matrix . |
TfIdfTransform.TfIdfGlobalTransform(Matrix matrix)
Creates an instance of
TfIdfGlobalTransform from a Matrix . |
TransposedMatrix(Matrix matrix)
Creates a
Matrix that provides a transposed view of the original
matrix. |
Modifier and Type | Field and Description |
---|---|
protected Matrix |
AbstractSvd.classFeatures
The class by feature type matrix.
|
protected Matrix |
AbstractSvd.dataClasses
The data point by class matrix.
|
Modifier and Type | Method and Description |
---|---|
Matrix |
NonNegativeMatrixFactorizationOPL.classFeatures()
Returns the latent class by feature
Matrix . |
Matrix |
AbstractSvd.classFeatures()
Returns the latent class by feature
Matrix . |
Matrix |
NonNegativeMatrixFactorizationMultiplicative.classFeatures()
Returns the latent class by feature
Matrix . |
Matrix |
SingularValueDecompositionLibC.classFeatures()
Returns the latent class by feature
Matrix . |
Matrix |
NonNegativeMatrixFactorizationOPL.dataClasses()
Returns the data point by latent class
Matrix . |
Matrix |
AbstractSvd.dataClasses()
Returns the data point by latent class
Matrix . |
Matrix |
NonNegativeMatrixFactorizationMultiplicative.dataClasses()
Returns the data point by latent class
Matrix . |
Matrix |
SingularValueDecompositionLibC.dataClasses()
Returns the data point by latent class
Matrix . |
Modifier and Type | Method and Description |
---|---|
static void |
NonNegativeMatrixFactorizationOPL.initialize(Matrix m)
Initializes every value in
m to be a random value between 0 and
1, inclusive. |
static void |
NonNegativeMatrixFactorizationMultiplicative.initialize(Matrix m)
Initializes every value in
m to be a random value between 0 and
1, inclusive. |
static void |
NonNegativeMatrixFactorizationOPL.makeNonZero(Matrix m)
Sets any negative values of
m to zero. |
Modifier and Type | Class and Description |
---|---|
class |
SemanticSpaceMatrix
A
Matrix implementation whose data is backed by a SemanticSpace . |
Modifier and Type | Method and Description |
---|---|
double |
KrippendorffsAlpha.compute(Matrix ratings,
KrippendorffsAlpha.DifferenceFunction diffFunc) |
double[] |
KrippendorffsAlpha.computeConfidenceIntervals(Matrix ratings,
KrippendorffsAlpha.DifferenceFunction diffFunc,
int numResamples,
double[] confidenceIntervals) |
Copyright © 2012. All Rights Reserved.