Package | Description |
---|---|
edu.ucla.sspace.clustering | |
edu.ucla.sspace.clustering.criterion |
Modifier and Type | Method and Description |
---|---|
static Assignments |
DirectClustering.cluster(Matrix matrix,
int numClusters,
int numRepetitions,
CriterionFunction criterion)
|
static Assignments |
DirectClustering.cluster(Matrix matrix,
int numClusters,
int numRepetitions,
KMeansSeed seedType,
CriterionFunction criterion)
|
Modifier and Type | Class and Description |
---|---|
class |
BaseFunction
This
CriterionFunction implements the basic functionality needed for
a majority of the functions available. |
class |
E1Function
This
CriterionFunction measures the external differences between
clusters. |
class |
G1Function
This
CriterionFunction interprets the dataset as a set of vertices in
a graph and measures the best cuts of these vertices. |
class |
H1Function
|
class |
H2Function
|
class |
HybridBaseFunction
This
CriterionFunction implements the basic functionality needed for
a majority of the hybrid functions available. |
class |
I1Function
This
CriterionFunction measures the amount of internal similarity for
each computed centroid. |
class |
I2Function
This
CriterionFunction measures the amount of internal similarity for
each computed centroid. |
Copyright © 2012. All Rights Reserved.